35 research outputs found

    Momentum dependence of the bispectrum in two-field inflation

    Full text link
    We examine the momentum dependence of the bispectrum of two-field inflationary models within the long-wavelength formalism. We determine the sources of scale dependence in the expression for the parameter of non-Gaussianity fNL and study two types of variation of the momentum triangle: changing its size and changing its shape. We introduce two spectral indices that quantify the possible types of momentum dependence of the local type fNL and illustrate our results with examples.Comment: 23 pages, 16 figures. v2: Final version. Minor textual change

    The binned bispectrum estimator: template-based and non-parametric CMB non-Gaussianity searches

    Full text link
    We describe the details of the binned bispectrum estimator as used for the official 2013 and 2015 analyses of the temperature and polarization CMB maps from the ESA Planck satellite. The defining aspect of this estimator is the determination of a map bispectrum (3-point correlator) that has been binned in harmonic space. For a parametric determination of the non-Gaussianity in the map (the so-called fNL parameters), one takes the inner product of this binned bispectrum with theoretically motivated templates. However, as a complementary approach one can also smooth the binned bispectrum using a variable smoothing scale in order to suppress noise and make coherent features stand out above the noise. This allows one to look in a model-independent way for any statistically significant bispectral signal. This approach is useful for characterizing the bispectral shape of the galactic foreground emission, for which a theoretical prediction of the bispectral anisotropy is lacking, and for detecting a serendipitous primordial signal, for which a theoretical template has not yet been put forth. Both the template-based and the non-parametric approaches are described in this paper.Comment: Latex 42 pages with 10 figures and JCAP macros. v2: corrected small mistake in section 5.3, changed colour scale of slice figures, other minor changes and additions, matches published versio

    Detecting Bispectral Acoustic Oscillations from Inflation Using a New Flexible Estimator

    Full text link
    We present a new flexible estimator for comparing theoretical templates for the predicted bispectrum of the CMB anisotropy to observations. This estimator, based on binning in harmonic space, generalizes the optimal estimator of Komatsu, Spergel, and Wandelt by allowing an adjustable weighting scheme for masking possible foreground and other contaminants and detecting particular noteworthy features in the bispectrum. The utility of this estimator is illustrated by demonstrating how acoustic oscillations in the bispectrum and other details of the bispectral shape could be detected in the future PLANCK data provided that fNL is sufficiently large. The character and statistical weight of the acoustic oscillations and the decay tail are described in detail.Comment: 15 pages, 9 jpeg and pdf figures, uses pdflatex and mn2e.cl

    Isocurvature modes in the CMB bispectrum

    Full text link
    We study the angular bispectrum of local type arising from the (possibly correlated) combination of a primordial adiabatic mode with an isocurvature one. Generically, this bispectrum can be decomposed into six elementary bispectra. We estimate how precisely CMB data, including polarization, can enable us to measure or constrain the six corresponding amplitudes, considering separately the four types of isocurvature modes (CDM, baryon, neutrino density, neutrino velocity). Finally, we discuss how the model-independent constraints on the bispectrum can be combined to get constraints on the parameters of multiple-field inflation models.Comment: 29 pages, 19 figures. v2: minor textual changes, matches published versio

    Constraining the bispectrum from bouncing cosmologies with Planck

    Full text link
    Bouncing models of cosmology, as they arise e.g. in loop quantum cosmology, can generate close-to-scale-invariant fluctuation spectra as observed in the Cosmic Microwave Background (CMB). However, they are typically not Gaussian and also generate a bispectrum. It was proposed that these models can help to mitigate the large-scale anomalies of the CMB by considering large non-Gaussianities on very large scales, which decay exponentially on sub-horizon scales. It was therefore thought that this non-Gaussianity would not be visible in observations, which can only probe sub-horizon scales. In this letter we show that bouncing models with parameters such that they can mitigate the large-scale anomalies of the CMB are excluded by the Planck data with high significance of, depending on the specific model, 6.46.4 or 1414 standard deviations.Comment: 5 pages, 1 figur

    Hunting for Isocurvature Modes in the CMB non-Gaussianities

    Full text link
    We investigate new shapes of local primordial non-Gaussianities in the CMB. Allowing for a primordial isocurvature mode along with the main adiabatic one, the angular bispectrum is in general a superposition of six distinct shapes: the usual adiabatic term, a purely isocurvature component and four additional components that arise from correlations between the adiabatic and isocurvature modes. We present a class of early Universe models in which various hierarchies between these six components can be obtained, while satisfying the present upper bound on the isocurvature fraction in the power spectrum. Remarkably, even with this constraint, detectable non-Gaussianity could be produced by isocurvature modes. We finally discuss the prospects of detecting these new shapes with the Planck satellite.Comment: 9 pages, 2 figure

    Gauge-invariant perturbations at second order in two-field inflation

    Full text link
    We study the second-order gauge-invariant adiabatic and isocurvature perturbations in terms of the scalar fields present during inflation, along with the related fully non-linear space gradient of these quantities. We discuss the relation with other perturbation quantities defined in the literature. We also construct the exact cubic action of the second-order perturbations (beyond any slow-roll or super-horizon approximations and including tensor perturbations), both in the uniform energy density gauge and the flat gauge in order to settle various gauge-related issues. We thus provide the tool to calculate the exact non-Gaussianity beyond slow-roll and at any scale.Comment: 28 pages, no figures. v2: Added a summary subsection 4.3 with further discussion of the results. Generalized all super-horizon results of section 4 and appendix A to exact ones. Other minor textual changes and references added. Conclusions unchanged. Matches published versio

    Multiple-field inflation and the CMB

    Full text link
    In this paper, we investigate some consequences of multiple-field inflation for the cosmic microwave background radiation (CMB). We derive expressions for the amplitudes, the spectral indices and the derivatives of the indices of the CMB power spectrum in the context of a very general multiple-field theory of slow-roll inflation, where the field metric can be non-trivial. Both scalar (adiabatic, isocurvature and mixing) and tensor perturbations are treated and the differences with single-field inflation are discussed. From these expressions, several relations are derived that can be used to determine the importance of multiple-field effects observationally from the CMB. We also study the evolution of the total entropy perturbation during radiation and matter domination and the influence of this on the isocurvature spectral quantities.Comment: 24 pages. References added, some very minor textual changes, matches version to be published in CQ
    corecore